Aplicación del método de mínimos cuadrados discretos a mediciones de demanda de oxígeno químico en efluentes de curtembres

Contenido principal del artículo

Cristian Inca Balseca
María Gabriela Barrera Rea
Franklin Marcelo Coronel Maji
Jorge Leonardo Magallanes Tomalá

Resumen

El proceso de curtido es el proceso de tratamiento y transformación de la piel animal en cuero, donde dicho proceso reside especialmente en la adición a las pieles de una serie de productos curtientes como las sales de cromo, entre otros. En este sentido, se puede decir que, en la presente investigación, se estudió el comportamiento fisicoquímico y microbiológico del reactor durante el proceso del cuero en las industrias, lo que ha ido incrementando esta actividad en el comportamiento de las aguas residuales producidas por los productores cuero, teniendo en cuenta que necesitan sistemas más eficientes para el tratamiento de los efluentes generados en este sector. Es así como para el desarrollo de esta investigación se manejó un reactor por carga con un volumen útil de 2 litros que trabajó en circunstancias aeróbicas con ciclos de 24 horas. Asimismo, para el desarrollo de esta investigación se logró aumentar progresivamente la concentración del efluente de la curtiduría, teniendo en cuenta el DQO y el recuento de microorganismos heterótrofos, que fueron las principales variables estudiadas durante la investigación. Finalmente, las remociones de DQO biodegradables logradas al final del proceso de aclimatación fueron del 57,9% para DQOt y del 76,8% para DQOs, presentando además cantidades poco significativas de bacterias heterótrofas en el efluente

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Inca Balseca, C., Barrera Rea, M. G., Coronel Maji, F. M., & Magallanes Tomalá, J. L. (2024). Aplicación del método de mínimos cuadrados discretos a mediciones de demanda de oxígeno químico en efluentes de curtembres. Aula Virtual, 5(12), 1(265-287). https://doi.org/10.5281/zenodo.11198184
Sección
Artículos

Citas

Ahmed, D., Maraz, K. M., & Khan, R. A. (2021). Prospects and challenges of chrome tanning: approach a greener technology in leather industry. Scientific Review, 7(3), 42-49. Online document. Available DOI: 10.32861/sr.73.42.49

Al-Jabari, M., Sawalha, H., Pugazhendhi, A., & Rene, E. R. (2021). Cleaner production and resource recovery opportunities in leather tanneries: Technological applications and perspectives. Bioresource Technology Reports, 16, 100815. Online document. Available https://doi.org/10.1016/j.biteb.2021.100815

Aragaw, T. A., Bogale, F. M., & Aragaw, B. A. (2021). Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. Journal of Saudi Chemical Society, 25(8), 101280. Online document. Available https://doi.org/10.1016/j.jscs.2021.101280

Auad, P., Spier, F., & Gutterres, M. (2020). Vegetable tannin composition and its association with the leather tanning effect. Chemical Engineering Communications, 207(5), 722-732. Online document. Available https://doi.org/10.1080/00986445.2019.1618843

Bhardwaj, A., Kumar, S., & Singh, D. (2023). Tannery effluent treatment and its environmental impact: a review of current practices and emerging technologies. Water Quality Research Journal, 58(2), 128-152. Online document. Available https://doi.org/10.2166/wqrj.2023.002

Chan, S. S., Khoo, K. S., Chew, K. W., Ling, T. C., & Show, P. L. (2022). Recent advances biodegradation and biosorption of organic compounds from wastewater: Microalgae-bacteria consortium-A review. Bioresource Technology, 344, 126159. Online document. Available https://doi.org/10.1016/j.biortech.2021.126159

China, C. R., Maguta, M. M., Nyandoro, S. S., Hilonga, A., Kanth, S. V., & Njau, K. N. (2020). Alternative tanning technologies and their suitability in curbing environmental pollution from the leather industry: A comprehensive review. Chemosphere, 254, 126804. Online document. Available https://doi.org/10.1016/j.chemosphere.2020.126804

Covington, A. D., & Wise, W. R. (2020). Current trends in leather science. Journal of Leather Science and Engineering, 2, 1-9. Online document. Available https://doi.org/10.1186/s42825-020-00041-0

Devi, A., Verma, M., Saratale, G. D., Saratale, R. G., Ferreira, L. F. R., Mulla, S. I., & Bharagava, R. N. (2023). Microalgae: A green eco-friendly agents for bioremediation of tannery wastewater with simultaneous production of value-added products. Chemosphere, 139192. Online document. Available https://doi.org/10.1016/j.chemosphere.2023.139192

Doulah, M. S. (2018). Forecasting Temperatures in Bangladesh: An Application of SARIMA Models. International Journal of Statistics and Mathematics, 5(1), 108-18. Online document. Available https://www.researchgate.net/profile/Md-Siraj-Doulah/publication/328730807_Forecasting_Temperatures_in_Bangladesh_An_Application_of_SARIMA_Models/links/5bdeda26a6fdcc3a8dbd19dc/Forecasting-Temperatures-in-Bangladesh-An-Application-of-SARIMA-Models.pdf

Eray, E., Boffa, V., Jørgensen, M. K., Magnacca, G., & Candelario, V. M. (2020). Enhanced fabrication of silicon carbide membranes for wastewater treatment: From laboratory to industrial scale. Journal of membrane science, 606, 118080. Online document. Available https://doi.org/10.1016/j.memsci.2020.118080

Etuk, E. H., & Ojekudo, N. (2015). Subset SARIMA modelling: An alternative definition and a case study. British Journal of Mathematics & Computer Science, 5(4), 538. Online document. Available http://dx.doi.org/10.9734/bjmcs/2015/14305

Fan, F., Xu, R., Wang, D., & Meng, F. (2020). Application of activated sludge for odor control in wastewater treatment plants: approaches, advances and outlooks. Water Research, 181, 115915. Online document. Available in: https://doi.org/10.1016/j.watres.2020.115915

Fashae, O. A., Olusola, A. O., Ndubuisi, I., & Udomboso, C. G. (2019). Comparing ANN and ARIMA model in predicting the discharge of River Opeki from 2010 to 2020. River research and applications, 35(2), 169-177. Online document. Available https://onlinelibrary.wiley.com/doi/abs/10.1002/rra.3391

Fraga-Corral, M., García-Oliveira, P., Pereira, A. G., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M. A., & Simal-Gandara, J. (2020). Technological application of tannin-based extracts. Molecules, 25(3), 614. Online document. Available https://doi.org/10.3390/molecules25030614

Han, W., Zeng, Y., & Zhang, W. (2016). A Further Investigation on Collagen-Cr (III) Interaction at Molecular Level. Journal of the American Leather Chemists Association, 111(03), 101-106. Online document. Available Avalaible in:https://journals.uc.edu/index.php/JALCA/article/view/2960

Hansen, É., de Aquim, P. M., & Gutterres, M. (2021). Current technologies for post-tanning wastewater treatment: A review. Journal of Environmental Management, 294, 113003. Online document. Available https://doi.org/10.1016/j.jenvman.2021.113003

Hasan, S. M. M., Akber, M. A., Bahar, M. M., Islam, M. A., Akbor, M. A., Siddique, M. A. B., & Islam, M. A. (2021). Chromium contamination from tanning industries and Phytoremediation potential of native plants: A study of savar tannery industrial estate in Dhaka, Bangladesh. Bulletin of Environmental Contaminati Online document. Available https://doi.org/10.1007/s00128-021-03262-zon and Toxicology, 106(6), 1024-1032.

Hira, A., Pacini, H., Attafuah-Wadee, K., Sikander, M., Oruko, R., & Dinan, A. (2022). Mitigating tannery pollution in sub-Saharan Africa and south Asia. Journal of Developing Societies, 38(3), 360-383. Online document. Available DOI: 10.1177/0169796X221104856

Hu, Y., Wu, G., Li, R., Xiao, L., & Zhan, X. (2020). Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment. Water Research, 179, 115914. Online document. Available https://doi.org/10.1016/j.watres.2020.115914

Jasim, N. A. (2020). The design for wastewater treatment plant (WWTP) with GPS X modelling. Cogent Engineering, 7(1), 1723782. Online document. Available https://doi.org/10.1080/23311916.2020.1723782

Ji, J., Ni, J., Ohtsu, A., Isozumi, N., Hu, Y., Du, R., ... & Li, Y. Y. (2021). Important effects of temperature on treating real municipal wastewater by a submerged anaerobic membrane bioreactor: Removal efficiency, biogas, and microbial community. Bioresource Technology, 336, 125306. Online document. Available https://doi.org/10.1016/j.biortech.2021.125306

Ji, B., Zhu, L., Wang, S., & Liu, Y. (2021). Temperature-effect on the performance of non-aerated microalgal-bacterial granular sludge process in municipal wastewater treatment. Journal of environmental management, 282, 111955. Online document. Available https://doi.org/10.1016/j.jenvman.2021.111955

Jiang, J., Wang, X., Ren, H., Cao, G., Xie, G., Xing, D., & Liu, B. (2020). Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China. Science of the Total Environment, 746, 141378. Online document. Available https://doi.org/10.1016/j.scitotenv.2020.141378

Kanagaraj, J., Panda, R. C., & Kumar, V. (2020). Trends and advancements in sustainable leather processing: Future directions and challenges—A review. Journal of Environmental Chemical Engineering, 8(5), 104379. Online document. Available https://doi.org/10.1016/j.jece.2020.104379

Kapoor, R. T., Danish, M., Singh, R. S., Rafatullah, M., & HPS, A. K. (2021). Exploiting microbial biomass in treating azo dyes contaminated wastewater: Mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering, 43, 102255. Online document. Available https://doi.org/10.1016/j.jwpe.2021.102255

Kerur, S. S., Bandekar, S., Hanagadakar, M. S., Nandi, S. S., Ratnamala, G. M., & Hegde, P. G. (2021). Removal of hexavalent Chromium-Industry treated water and Wastewater: A review. Materials Today: Proceedings, 42, 1112-1121. Online document. Available http://dx.doi.org/10.1016/j.matpr.2020.12.492

Khambhaty, Y. (2020). Applications of enzymes in leather processing. Environmental Chemistry Letters, 18(3), 747-769. Online document. Available https://doi.org/10.1007/s10311-020-00971-5

Kramar, V., & Alchakov, V. (2023). Time-Series Forecasting of Seasonal Data Using Machine Learning Methods. Algorithms, 16(5), 248. Online document. Available https://doi.org/10.3390/a16050248

Kumar, R., Basu, A., Bishayee, B., Chatterjee, R. P., Behera, M., Ang, W. L., ... & Jeon, B. H. (2023). Management of tannery waste effluents towards the reclamation of clean water using an integrated membrane system: A state-of-the-art review. Environmental research, 115881. Online document. Available https://doi.org/10.1016/j.envres.2023.115881

Li, Y., Yang, Z., Yang, K., Wei, J., Li, Z., Ma, C., ... & Zhang, C. (2022). Removal of chloride from water and wastewater: removal mechanisms and recent trends. Science of the Total Environment, 821, 153174. Online document. Available https://doi.org/10.1016/j.scitotenv.2022.153174

Liu, Y., Ali, A., Su, J. F., Li, K., Hu, R. Z., & Wang, Z. (2023). Microbial-induced calcium carbonate precipitation: Influencing factors, nucleation pathways, and application in waste water remediation. Science of the Total Environment, 860, 160439. Online document. Available https://doi.org/10.1016/j.scitotenv.2022.160439

Mateo Pérez, V., Mesa Fernández, J. M., Ortega Fernández, F., & Villanueva Balsera, J. (2021). Gross solids content prediction in urban WWTPs using SVM. Water, 13(4), 442. Online document. Available https://doi.org/10.3390/w13040442

Ministerio del Ambiente, Agua y Transición Ecológica (MAATE). (2015). Online document. Available https://www.ambiente.gob.ec/wp-content/uploads/downloads/2018/05/Acuerdo-097.pdf

Milenkovic, M., & Bojovic, N. (2014). A Recursive Kalman Filter Approach to Forecasting Railway Passenger Flows. International Journal of Railiway Technology, 3(2), 39-57. Online document. Available http://dx.doi.org/10.4203/ijrt.3.2.3

Min, K. J., Kim, J. H., & Park, K. Y. (2021). Characteristics of heavy metal separation and determination of limiting current density in a pilot-scale electrodialysis process for plating wastewater treatment. Science of the Total Environment, 757, 143762. Online document. Available https://doi.org/10.1016/j.scitotenv.2020.143762

Moeeni, H., Bonakdari, H., & Ebtehaj, I. (2017). Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach. Journal of Earth System Science, 126, 1-13. Online document. Available https://doi.org/10.1007/s12040-017-0798-y

Naima, R., Oumam, M., Hannache, H., Sesbou, A., Charrier, B., Pizzi, A., & Charrier–El Bouhtoury, F. (2015). Comparison of the impact of different extraction methods on polyphenols yields and tannins extracted from Moroccan Acacia mollissima barks. Industrial Crops and Products, 70, 245-252. Online document. Available https://doi.org/10.1016/j.indcrop.2015.03.016

Niamat, H., Yasmeen, R., Mustafa, M. D., Zahid, M. A., Noor, Z., & Abbas, J. (2023). Mitigating the Harmful Impacts of Industrial Effluents; The Potential of Biological Treatment Techniques: Biological Treatment of Industrial Effluents. MARKHOR (The Journal of Zoology), 12-17. Online document. Available https://doi.org/10.54393/mjz.v4i02.77

Nur-E-Alam, M., Mia, M. A. S., Ahmad, F., & Rahman, M. M. (2020). An overview of chromium removal techniques from tannery effluent. Applied Water Science, 10(9), 205. Online document. https://doi.org/10.1007/s13201-020-01286-0

Oliveira, J. R. F. D., Varallo, F. R., Jirón, M., Ferreira, I. M. D. L., Siani-Morello, M. R., Lopes, V. D., & Pereira, L. R. L. (2021). Descrição do consumo de psicofármacos na atenção primária à saúde de Ribeirão Preto, São Paulo, Brasil. Cadernos de Saúde Pública, 37, e00060520. Online document. Available https://doi.org/10.1590/0102-311X00060520

Oruko, R. O., Edokpayi, J. N., Msagati, T. A., Tavengwa, N. T., Ogola, H. J., Ijoma, G., & Odiyo, J. O. (2021). Investigating the chromium status, heavy metal contamination, and ecological risk assessment via tannery waste disposal in sub-Saharan Africa (Kenya and South Africa). Environmental Science and Pollution Research, 28, 42135-42149. Online document. Available https://doi.org/10.1007/s11356-021-13703-1

Pradeep, S., Sundaramoorthy, S., Sathish, M., Jayakumar, G. C., Rathinam, A., Madhan, B., ... & Rao, J. R. (2021). Chromium-free and waterless vegetable-aluminium tanning system for sustainable leather manufacture. Chemical Engineering Journal Advances, 7, 100108. Online document. Available https://doi.org/10.1016/j.ceja.2021.100108

Rajan Durai, B. R., Sankar, V., & Koilpillai, J. (2023). Isolation and Characterization of Collagen from Tannery Waste for Biomedical Applications. Bio Nano Science, 13(4), 2033-2048. Online document. Available https://doi.org/10.1007/s12668-023-01228-5

Riguetto, C. V. T., Rosseto, M., Krein, D. D. C., Ostwald, B. E. P., Massuda, L. A., Zanella, B. B., & Dettmer, A. (2020). Alternative uses for tannery wastes: a review of environmental, sustainability, and science. Journal of Leather Science and Engineering, 2, 1-20. Online document. Available https://doi.org/10.1186/s42825-020-00034-z

Sahu, B., Jayakumar, G. C., & Alla, J. P. (2022). Recent trends in oil tanning and its applications-A way forward towards cleaner approach in chamois leather making. Journal of Cleaner Production, 356, 131755. Online document. Available https://doi.org/10.1016/j.jclepro.2022.131755

Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M. H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process safety and environmental protection, 143, 138-163. Online document. Available https://doi.org/10.1016/j.psep.2020.05.034

Sharma, N., & Vuppu, S. (2023). Computational Modelling and Molecular Docking of Industrial Leather Enzymes. Molecular Biotechnology, 1-19.

Su, Q., Huang, S., Zhang, H., Wei, Z., & Ng, H. Y. (2023). Abiotic transformations of sulfamethoxazole by hydroxylamine, nitrite and nitric oxide during wastewater treatment: Kinetics, mechanisms and pH effects. Journal of Hazardous Materials, 444, 130328. Online document. Available https://doi.org/10.1016/j.jhazmat.2022.130328

Tian, S. (2020). Recent advances in functional polyurethane and its application in leather manufacture: A review. Polymers, 12(9), 1996. Online document. Available https://doi.org/10.3390/polym12091996

Tiwari, B., Sellamuthu, B., Piché-Choquette, S., Drogui, P., Tyagi, R. D., Vaudreuil, M. A., ... & Dubé, R. (2021). Acclimatization of microbial community of submerged membrane bioreactor treating hospital wastewater. Bioresource Technology, 319, 124223. Online document. Available https://doi.org/10.1016/j.biortech.2020.124223

Tisha, S. M., Chowdhury, T. R., & Hossain, M. D. (2020). Heavy Metal Contamination and Ecological Risk Assessment in the Soil of Tannery Industry at Savar. Chemical Engineering Research Bulletin, 21, 106-113. Online document. Available http://dx.doi.org/10.3329/cerb.v22i1.54308

Turkmen Koc, S. N., Kipcak, A. S., Moroydor Derun, E., & Tugrul, N. (2021). Removal of zinc from wastewater using orange, pineapple and pomegranate peels. International Journal of Environmental Science and Technology, 18, 2781-2792. Online document. Available https://doi.org/10.1007/s13762-020-03025-z

Xia, X., Zhu, F., Li, J., Yang, H., Wei, L., Li, Q., ... & Zhao, Q. (2020). A review study on sulfate-radical-based advanced oxidation processes for domestic/industrial wastewater treatment: degradation, efficiency, and mechanism. Frontiers in Chemistry, 8, 592056. Online document. Available https://doi.org/10.3389/fchem.2020.592056

Xu, D. W., Wang, Y. D., Jia, L. M., Qin, Y., & Dong, H. H. (2017). Real-time road traffic state prediction based on ARIMA and Kalman filter. Frontiers of Information Technology & Electronic Engineering, 18, 287-302. Online document. Available http://dx.doi.org/10.1631/fitee.1500381

Xu, S., Wang, Y. N., & Shi, B. (2022). Superhydrophobic modification of collagen fiber: a potential substitute for tanning. Journal of the American Leather Chemists Association, 117(10), 422-431. Online document. Available https://www.researchgate.net/profile/Ya-Nan-Wang-2/publication/376347441_Superhydrophobic_Modification_of_Collagen_Fiber_A_Potential_Substitute_for_Tanning/links/660b555cb839e05a20b640a0/Superhydrophobic-Modification-of-Collagen-Fiber-A-Potential-Substitute-for-Tanning.pdf

Yadav, A., Yadav, P., Raj, A., Ferreira, L. F. R., Saratale, G. D., & Bharagava, R. N. (2020). Tannery wastewater: A major source of residual organic pollutants and pathogenic microbes and their treatment strategies. In Microbes in agriculture and environmental development (pp. 245-264). CRC. Online document. Available https://www.taylorfrancis.com/chapters/edit/10.1201/9781003057819-13/tannery-wastewater-ashutosh-yadav-pooja-yadav-abhay-raj-luiz-fernando-ferreira-ganesh-dattatraya-saratale-ram-naresh-bharagava

Zhang, C., Lin, J., Jia, X., & Peng, B. (2016). A salt-free and chromium discharge minimizing tanning technology: the novel cleaner integrated chrome tanning process. Journal of cleaner production, 112, 1055-1063. Online document. Available https://doi.org/10.1016/j.jclepro.2015.07.155

Zhang, Y., Liu, H., Tang, K., Liu, J., & Li, X. (2021). Effect of different ions in assisting protease to open the collagen fiber bundles in leather making. Journal of cleaner production, 293, 126017. Online document. Available https://doi.org/10.1016/j.jclepro.2021.126017

Zhang, X., Wu, X., Zhu, G., Lu, X., & Wang, K. (2022). A seasonal ARIMA model based on the gravitational search algorithm (GSA) for runoff prediction. Water Supply, 22(8), 6959-6977. Online document. Available https://doi.org/10.2166/ws.2022.263

Zhao, J., Wu, Q., Tang, Y., Zhou, J., & Guo, H. (2022). Tannery wastewater treatment: conventional and promising processes, an updated 20-year review. Journal of Leather Science and Engineering, 4(1), 10. Online document. Available https://doi.org/10.1186/s42825-022-00082-7

Zhu, R., Yang, C., Li, K., Yu, R., Liu, G., & Peng, B. (2020). A smart high chrome exhaustion and chrome-less tanning system based on chromium (III)-loaded nanoparticles for cleaner leather processing. Journal of cleaner production, 277, 123278. Online document. Available https://doi.org/10.1016/j.jclepro.2020.123278